2 Partial Derivatives

To this point, with the exception of the occasional section in the last chapter, we've been working
almost exclusively with functions of a single variable. It is now time to formally start multi-variable
Calculus, ie. Calculus involving functions of two or more variables. We will be covering the same
basic topics as we do with single variable Calculus. Mamely, limits, derivatives and integrals.

In this chapter we will open up with a quick section discussing taking limits of multi-variable func-
tions. We will only be covering limits of multi-variable functions with a single chapter because, as
we'll see, many of the concepts from single variable limits still hold, with some natural extensions
of course. However, as we'll also see the work will often be significantly longer’harder and so we
won't be spending a lot of time discussing limits of multi-variable functions. Luckily enough for
us we also won't need to worry all that much about limits of multi-variable functions so the quick
discussion of limits in this chapter will suffice.

The rest of the chapter will be discussing how to take derivatives of multi-variable functions. We
want to keep the “main” interpretation of derivatives, namely the derivative will still give the rate of
change of the function. The issue here is that because we have multiple variables the function can
have differing rates of change depending on how we allow the various variables to change.

S0, to start out the derivative discussion we will start by defining the partial derivative. These
will restrict just how we allow the various variables to change. We will eventually introduce the
directional derivative which will allow the variables to change in any arbitrary manner. Inthe process
of introducing the idea of a directional derivative we'll also infroduce the concept of a gradient of
a function. The gradient will arise in quite a few sections throughout the rest of this multi-variable
Calculus material, including integrals.

Finally, as we'll see, if you can take dervatives of single varable functions then you have the
majority of the knowledge that you need to take derivatives of multi-variable functions. There are,
however, some subtleties that we'll need to remember to deal with. Those subtleties are, generally,
the issues that most students run into when taking derivatives of multi-variable functions.
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2.1 Limits

In this zection we will take a look at limits involving functions of more than one variable. In fact, we
will concentrate mostly on limits of functions of two variables, but the ideas can be extended out
to functions with more than two varables.

Before getting into this let's briefly recall how limits of functions of one variable work. We say
that,
;m filz)=L

provided,
im fiz)= Im fir)=L
I—at I—a
Also, recall that,
lim f{x)

I—a+
is a right hand limit and requires us to only look at values of x that are greater than a. Like-
wise,

im f(z)

Ir—a

is a left hand limit and requires us to only look at values of - that are less than a.

In other words, we will have ‘li"}',f':” = L provided f (x) approaches L as we move in towards
r = a (without letting x = a) from both sides.

Mow, notice that in this case there are only two paths that we can take as we move in towards
r = a. We can either move in from the left or we can mowve in from the right. Then in order for the
limit of a function of one variable to exist the function must be approaching the same value as we
take each of these paths in fowards r = a.

With functions of two variables we will have to do something similar, except this time there is
(potentially) going to be a lot more work involved. Let's first address the notation and get a feel for
just what we're going to be asking for in these kinds of limits.

We will be asking to take the limit of the function [ (r.y) as r approaches a and as y approaches
k. This can be written in several ways. Here are a couple of the more standard notations.

lim fiz.y) lim  fiz.y)

T4 [, —si B
p—b
We will use the second notation more often than not in this course. The second notation is also a
little more helpful in illustrating what we are really doing here when we are taking a limit. In taking
a limit of a function of two variables we are really asking what the value of [ [x. y) is doing as we
move the point (. ) in closer and doser to the point (o, 5) without actually letting it be (a. k).

Just like with limits of functions of one variable, in order for this limit to exist, the function must be
approaching the same value regardless of the path that we take as we move in towards (o, ). The
problem that we are immediately faced with is that there are literally an infinite number of paths
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that we can take as we move in towards (a.b). Here are a few examples of paths that we could
take.

We put in a couple of straight line paths as well as a couple of “stranger” paths that arent straight
line paths. Also, we only included & paths here and as you can see simply by varying the slope of
the straight line paths there are an infinite number of these and then we would need to consider
paths that aren't straight line paths.

In other words, to show that a limit exists we would technically need to check an infinite number
of paths and verify that the function is approaching the same value regardless of the path we are
using to approach the point.

Luckily for us however we can use one of the main ideas from Calculus | limits to help us take limits
here.

Definition

Afunction f (z.y) is continuous at the point [a. b) if,

lim i Fiz.y)= Ffla.b)

(2,5} —{ak)

From a graphical standpoint this definition means the same thing as it did when we first saw con-
tinuity in Calculus |. A function will be continuous at a point if the graph doesn't have any holes or
breaks at that point.

How can this help us take limits? Well, just as in Calculus |, if you know that a function is continuous
at (a. k) then you also know that

lim firz.y)=Ffilab)
[x,yh—{ab)
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miust be true. So, if we know that a function is continuous at a point then all we need to do to take
the limit of the function at that point is to plug the point into the function.

All the standard functions that we know to be continuous are still continuous even if we are plugging
in more than one variable now. We just need to watch out for division by zero, square roots of

negative numbers, logarithms of zero or negative numbers, efc.

Mote that the idea about paths is one that we shouldn't forget since it is a nice way to determine if
a limit doesn't exist. If we can find two paths upon which the function approaches different values
as we get near the point then we will know that the limit doesn’t exist.

Let's take a lock at a couple of examples.

g Example 53§ 3

Determine if the following limits exist or not. If they do exist give the value of the limit.

{a) lim (:5:32 + yrCos (mr — Trz]J
[r5z)—={2.1,-1)
b}y lm
T O ]
Solution
{a) lim (:5:32 + yxrcos (mr — Trz]J
[ gz)—{2,1 1)

Ckay, in this case the function is continuous at the point in question and so all we need
to do is plug in the values and we're done.

m (.‘i.r”._r+ yx COS (7 — :l:z;-) =32 (—1) + (1) (2) 08 (27 + w) = — 14
{xyz)—{2,1,-1)

B lim 2
(g5l x + Y

In this case the function will not be continuous along the line y = —x since we will get
division by zero when this is true. Howewer, for this problem that is not something that
we will need to worry about since the point that we are taking the limit at isn't on this
line.
Therefore, all that we need to do is plug in the point since the function is continuous
at this point.
) Ty
lim

A gl T+ U |

In the previous example there wasn't really anything to the limits. The functions were continuous at

3
i}
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the point in guestion and so all we had to do was plug in the point. That, of course, will not always
be the case so let's work a few examples that are more typical of those you'll see here.

B ExaRies) )

Determine if the following limit exist or not. If they do exist give the value of the limit.

2 —ry —y°
[z, mi—{1,1} =y

Solution

In this case the function is not continuous at the point in question (clearly division by zero).
However, that does not mean that the limit can't be done. We saw many examples of this
in Calculus | where the function was not continuous at the point we were looking at and yet
the limit did exist.

In the case of this limit notice that we can factor both the numerator and denominator of the
function as follows,

2t oy — 2r+uliz—w) ) 2r 4+
-y (2= + y) (= — v) i f

limn . . = lirm - = =
{ryi—=(1.1} Tr= — (=11} lx—whiilx+u) {ryi—=(1.1} r+u

30, just as we saw in many examples in Calculus |, upon factoring and canceling common
factors we arrive at a function that in fact we can take the limit of. 3o, to finish out this
example all we need to do is actually take the limit.

Taking the limit gives,

) 22 —ay—y° ) rty
lirm —_—

+ firm
. [zpi—{1,1} F8 — g {ryl—(ll] T4+ N '

Before we move on to the next set of examples we should note that the situation in the previous
example is what generally happened in many limit examples/problems in Calculus |. In Calculus
Il howewer, this tends to be the exception in the examples/problems as the next set of examples
will show. In other words, do not expect most of these types of limits to just factor and then exist
as they did in Calculus 1.

]
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Determine if the following limits exist or not. If they do exist give the value of the limit.
(x5} —=(00) x4+ dj[‘

(a)

iy
b im ——
®) (r.g)—00) T% + ¥°

Solution

a fim i

@ (xg}—=00) =* + 3y

In this case the function is not continuous at the point in question and so we can't just
plug in the point. Also, note that, unlike the previous example, we can't factor this
function and do some canceling so that the limit can be taken.

Therefore, since the function is not continuous at the point and because there is no
factoring we can do, there is at least a chance that the limit doesn't exist. If we could
find two different paths to approach the point that gave different values for the limit then
we would know that the limit didn’t exist. Two of the more common paths to check are
the » and y-axis so let's try those.

Before actually doing this we need to address just what exactly do we mean when we
say that we are going to approach a point along a path. When we approach a point
along a path we will do this by either fixing r or y or by relating . and y through some
function. In this way we can reduce the limit to just a limit involving a single variable
which we know how to do from Calculus I.

So, let's see what happens along the r-axis. If we are going to approach (0.0) along
the r-axis we can take advantage of the fact that that along the r-axis we know that
y = (. This means that, along the z-axis, we will plug in y = 0 into the function and
then take the limit as » approaches zero.

2yt (0)*
—_——= lim ———= Ilm 0=0
(x,9)-(0,0) 4 -'5!{‘ (r,0)—=(00) ! + 30) (x,0)—+{0.0)

So, along the r-axis the function will approach zero as we move in towards the origin.
Now, let’s try the y-axis. Along this axis we have » = 0 and so the limit becomes,

2% 2 9
ey < 0y .
——= Im ———= 1lm 0=0
(ryl=(00) ! + 3”1 (0.x—=(0.0) (0)" + .'5,/’ (0,51 —=(0.0)

So, the same limit along two paths. Don't misread this. This does NOT say that the
—— —

Dr. Salam Abdulqgader Applied Mathematics Year Two

105



Chapter 2 Section 2.1 : Limits

limit exists and has a value of zero. This only means that the limit happens to have
the same value along two paths.

Let's take a look at a third fairy comimon path to take a look at. In this case we'll move
in towards the origin along the path y = x. This iz what we meant previously about
relating r and y through a function.

To do this we will replace all the y's with =°s and then let r approach zero. Let's take a

look at this limit.
S A R o .
{x, = (i) T + i - {zxi—in) i + 3 - [, =) =00} 47 - {xx)—={0,0) 4 - 4

S0, a different value from the previous two paths and this means that the limit can't
possibly exist.

Mote that we can use this idea of moving in towards the origin along a line with the
mare general path y = ma if we need to.

3

" Iy
b lim
[ ] |y} —= {0} b 4+ J.f"

Okay, with this last one we again have continuity problems at the origin and again there
is no factoring we can do that will allow the limit to be taken. So, again let's see if we
can find a couple of paths that give different values of the limit.

First, we will use the path y = r. Along this path we have,

B J.:I. . J.:LJ. . r ] J'."
lim _ - lim - = lim = =10

. limn =
{zyi—+(00) T 4 ¢ (r,Fh—s(0,0) o0 + £ (rx)—slmn) 28 4+ 72 (rri—=iog 3 + 1

Now, let's try the path y = =*. Along this path the limit becomes,

IH U . J.H J.H "

lim - = fm —= lim — = lim
(gl T + ¥ (za¥)sion) o8 + (2¥)7 matsion 25% (retioion)

ol =

We now have two paths that give different values for the limit and so the limit doesn't
exist.

As this imit has shown us we can, and often need, to use paths other than lines like

‘ we did in the first part of this example. '

So, as we've seen in the previous example limitz are a litle different here from those we saw in
Calculus 1. Limits in multiple variables can be quite difficult to evaluate and we've shown several
examples where it took a little work just to show that the limit does not exist.
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2.2 Partial Derivatives

Mow that we hawve the brief discussion on limits out of the way we can proceed into taking derivatives
of functions of more than one variable. Before we actually start taking derivatives of functions of
more than one vanable let's recall an important interpretation of derivatives of functions of one
variable.

Recall that given a function of one variable, f(x). the derivative, f'(x), represents the rate of
change of the function as r changes. This is an important interpretation of derivatives and we are
not going to want to lose it with functions of more than one variable. The problem with functions of
mare than one variable is that there is more than one variable. In other words, what do we do if we
anly want one of the variables to change, or if we want more than one of them to change? In fact, if
we're going to allow more than one of the variables to change there are then going to be an infinite
amount of ways for them to change. For instance, one variable could be changing faster than the
other variable(s) in the function. MNotice as well that it will be completely possible for the function to
be changing differently depending on how we allow one or more of the variables to change.

We will need to develop ways, and notations, for dealing with all of these cases. In this section
we are going to concentrate exclusively on only changing one of the variables at a time, while the
remaining variable{s) are held fixed. We will deal with allowing multiple variables to change in a
later section.

Because we are going to only allow one of the variables to change taking the derivative will now
become a fairly simple process. Let's start off this discussion with a fairly simple function.

Let's start with the function f(x.y) = 2r°y? and let's determine the rate at which the function is
changing at a point, (a. &), if we hold y fixed and allow = to vary and if we hold - fixed and allow y
to vary.

We'll start by looking at the case of holding y fixed and allowing = to vary. Since we are interested
in the rate of change of the function at (. &) and are holding y fixed this means that we are going to
always have y = b (if we didn't have this then eventually y would have to change in order to get to
the point...). Doing this will give us a function involving only r's and we can define a new function
as follows,

g(z) = f{z.b) = 227

Mow, this is a function of a single variable and at this point all that we are asking is to determine
the rate of change of g{x) at r = a. In other words, we want to compute g' (a) and since this is
a function of a single variable we already know how to do that. Here is the rate of change of the
function at (a. b) if we hold y fixed and allow x to vary.

i (a) = dal®

We will call g’ (a) the partial derivative of f(r. v) with respect to r at (a. b) and we will denote it in
the following way,
fz (o, b) = dab’
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Now, let's do it the other way. We will now hold  fixed and allow y to vary. We can do this in a
similar way. Since we are holding « fixed it must be fixed at »+ = « and so we can define a new
function of y and then differentiate this as we've always done with functions of one variable.

Here is the work for this,

hiy)=fla.y) =22y = ' (b) = Ga’b?

In this case we call /' (b) the partial derivative of f (r. y) with respect to y at (a, b) and we denote
it as follows,
fyla.b) = 6a’b*

Note that these two partial derivatives are sometimes called the first order partial derivatives.
Just as with functions of one variable we can have derivatives of all orders. We will be looking at
higher order derivatives in a later section.

Note that the notation for partial derivatives is different than that for derivatives of functions of a
single variable. With functions of a single variable we could denote the derivative with a single
prime. However, with partial derivatives we will always need to remember the variable that we
are differentiating with respect to and so we will subscript the variable that we differentiated with
respect to. We will shortly be seeing some altemate notation for partial derivatives as well.

Note as well that we usually don’t use the (a.b) notation for partial derivatives as that implies we
are working with a specific point which we usually are not doing. The more standard notation is to
just continue to use (r.y). So, the partial derivatives from above will more commonly be written
as,

fz(z.y) = 42y and fy(x.y) = 6r*y?

Now, as this quick example has shown taking derivatives of functions of more than one variable
is done in pretty much the same manner as taking derivatives of a single variable. To compute
f: (x.y) all we need to do is treat all the 's as constants (or numbers) and then differentiate the
1's as we've always done. Likewise, to compute f, (z. y) we will treat all the +’s as constants and
then differentiate the y's as we are used to doing.

Before we work any examples let's get the formal definition of the partial derivative out of the way
as well as some altemate notation.

Since we can think of the two partial derivatives above as derivatives of single variable functions it
shouldn't be too surprising that the definition of each is very similar to the definition of the denvative
for single variable functions. Here are the formal definitions of the two partial derivatives we looked
at above.

h.y) - X w+h) - &
folmeg) = fn flr+hy)— f(z.y) S (x,3) = Im flx.y+h)— f(z.4)
h—0 h h—0 h

If you recall the Calculus | definition of the limit these should look familiar as they are very close to
the Calculus | definition with a (possibly) obvious change.
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Mow let's take a quick look at some of the possible alternate notations for partial derivatives. Given
the function z = f(x. y) the following are all equivalent notations,

_ aF i ) iz
Felzp)=fe = 3 = B [:fu_uj} =zz=p- = D f
af i iz
Ny} = .=—=—[: |'J'_y|:]=z.=—=
"r'!' ' '&' iy dy Fi ¥ iy ¥

For the fractional notation for the partial derivative notice the difference between the partial deriva-
tive and the ordinary derivative from single variable calculus.
fix) = fliz)= 4
dr
iaf i
fa(z.y) =5 & fylzu) =3

I

Fizy)

Okay, now let's work some examples. When working these examples always keep in mind that
we need to pay very close attention to which variable we are differentiating with respect to. This
is important because we are going to treat all other variables as constants and then proceed with
the derivative as if it was a function of a single variable. If you can remember this you'll find that
doing partial derivatives are not much more difficult that doing derivatives of functions of a single
variable as we did in Calculus 1.

B Exsit o) 3

Find all of the first order partial derivatives for the following functions.

(@) fiz,p)=2'+6,5—-10

(BY w =y — Wy?z? + 43z — 7ian (dy)

. S R
(e} his.t)=1t In.:-."] + 5 |

{d} fir.y)=cos (%) pr r-5y

Solution
(@) fiz.y)=x"+6,5-10

Let's first take the derivative with respect to » and remember that as we do 50 all the
v's will be treated as constants. The partial derivative with respect to x is,

felz.y) = 47

Notice that the second and the third term differentiate to zero in this case. It should
II—— ——
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be clear why the third term differentiated to zero. t's a constant and we know that
constants always differentiate to zero. This is also the reason that the second term
differentiated to zero. Remember that since we are differentiating with respect to =«
here we are going to treat all y's as constants. That means that terms that only involve
v's will be treated as constants and hence will differentiate to zero.

Now, let's take the derivative with respect to y. In this case we treat all +’s as constants
and so the first term involves only ='s and so will differentiate to zero, just as the third
term will. Here is the partial derivative with respect to y.

fyla.w) =

?Ell""

(b) w ="y — l0y*z? + 43> — Tian(4dy)

With this function we've got three first order derivatives to compute. Let's do the partial
dervative with respect to r first. Since we are differentiating with respect to = we will
treat all y's and all z's as constants. This means that the second and fourth terms will
differentiate to zero since they only involve y's and z's.

This first term contains both »'s and 's and so when we differentiate with respect
to r the y will be thought of as a multiplicative constant and so the first term will be
differentiated just as the third term will be differentiated.

Here is the partial derivative with respect to x.

-

- == 2ry + 43

i
Let's now differentiate with respect to y. In this case all ='s and z's will be treated as
constants. This means the third term will differentiate to zero since it contains only
x's while the «'s in the first term and the z's in the second term will be treated as
multiplicative constants. Here is the derivative with respect to 3.
f_ Tt Myz* — 28 8ec” (4y)

iy

Finally, let's get the derivative with respect to z. Since only one of the terms involve
z's this will be the only non-zero term in the derivative. Also, the y's in that term will be
treated as multiplicative constants. Here is the derivative with respect to =.

the 2 2
= = —=Jdly"
dz e

— ——
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Tini2Ye D _ YA
(c) his.t)=t"In(s ]+f_* — Vst

With this one we'll not put in the detail of the first two. Before taking the derivative let's
rewrite the function a little to help us with the differentiation process.

h(s.t)=1t7In(s?) + 913 — 5

Now, the fact that we're using « and ¢ here instead of the “standard™ r and y shouldn't
be a problem. It will work the same way. Here are the two derivatives for this function.
( o2 217
by (5.1) = -(-,—,! =¢' (-—;) - is_4 = -l— -~ -{3”4
s
oh

V=2 = 7t%In (s°) — 27t~

hy (=t

Remember how to differentiate natural logarithms.

g (z)

d :
d—;('"“’””) = per

(d) f(r.y)=cos (;) e

Now, we can't forget the product rule with derivatives. The product rule will work the
same way here as it does with functions of one variable. We will just need to be careful
to remember which variable we are differentiating with respect to.

Let's start out by differentiating with respect to x. In this case both the cosine and the
exponential contain »'s and so we've really got a product of two functions involving »'s
and so we'll need to product rule this up. Here is the derivative with respect to r.

4 4 2. et 4 S
—sin(-) (_-—.,)e' -5y +cos(—)er ¥=W (2zy)
x z° x

i. sin (i) e* ¥~ | 9rycos (j) e™ 'y
xr= x xI

Fr(x.y)

Do not forget the chain rule for functions of one variable. We will be looking at the
chain rule for some more complicated expressions for multivariable functions in a later
section. However, at this point we're treating all the y's as constants and so the chain
rule will continue to work as it did back in Calculus I.

Also, don't forget how to differentiate exponential functions,
i (e[r,.n) i fl(I)e]lxl

dr
Now, let's differentiate with respect to 4. In this case we don't have a product rule to
worry about since the only place that the y shows up is in the exponential. Therefore,
I— —
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since r's are considered to be constants for this derivative, the cosine in the front will
also be thought of as a multiplicative constant. Here is the derivative with respect to y.

2 4 e
fylz.y) = (£ - 15y-)cos(_) er -y
x

Find all of the first order partial derivatives for the following functions.

Yu
u® +

(a) z = e

sin
(b) o(z.5.2) = =2

possires ——weus
(€) z= 22 +In(5x - 3°)

Solution

(@) z=—-—
us + Hu

Yu

We also can't forget about the quotient rule. Since there isn't too much to this one, we
will simply give the derivatives.

_ 9(u?+50) —9u(2u)  —9u? + 450

I 3

(u? + 5v) (u-' - 5(')2
_(0) (v? +50) —9u(5)  —45u

(u2 + 5v)° "~ (u? 4 50)°

v

In the case of the derivative with respect to v recall that «'s are constant and so when
we differentiate the numerator we will get zero!

sin
(b) g(r.y.2) = Iﬁzm

Now, we do need to be careful however to not use the quotient rule when it doesn't
need to be used. In this case we do have a quotient, however, since the z's and y's
only appear in the numerator and the z's only appear in the denominator this really
isn't a quotient rule problem.

Let's do the derivatives with respect to r and y first. In both these cases the z's are
constants and so the denominator in this is a constant and so we don't really need to

[ — —
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worry too much about it. Here are the derivatives for these two cases.

sin ( ‘ cos
ge (z.3.2) = zl‘”’ gy (x.0.2) = = 2,"”

Now, in the case of differentiation with respect to z we can avoid the quotient rule with
a quick rewrite of the function. Here is the rewrite as well as the derivative with respect
to z.

glz.y.z) = Isil'l(r,;)z‘2
2z sin (y)

g:{z.y.z) = -2zsin(y)z~* = - =

We went ahead and put the derivative back into the “original” form just so we could
say that we did. In practice you probably don't really need to do that.

(€) z= 22 +In(5x — 3p?)

In this last part we are just going to do a somewhat messy chain rule problem. How-
ever, if you had a good background in Calculus | chain rule this shouldn't be all that
difficult of a problem. Here are the two dernvatives,

l 2 2 - .) 2 -
2 = (= +In (52 - 37)) 5{,;—1(:- +In (52 — :&y‘])

L gk riepanssn i 5
= 5(+" +In(5x - 3y7)) ("’M——_Ty'*')

]

- ([- m;—)) (r" +1In (5! - 3])-)) 2

z,:%(;2+|n(.-n—3;}))‘5%(:*“:»(5:-3;,*))
1, 2 & _ a2\ -3 [~

= 5(=* +In (52 - 3¢”)) (.,-”_3”_))
= _—“”:‘y,_, (2 +In (52 — 3%))

‘ xr— '

So, there are some examples of partial derivatives. Hopefully you will agree that as long as we can
remember to treat the other variables as constants these work in exactly the same manner that
derivatives of functions of one variable do. So, if you can do Calculus I derivatives you shouldn't
have too much difficulty in doing basic partial derivatives.

There is one final topic that we need to take a quick look at in this section, implicit differentiation.
Before getting into implicit differentiation for multiple variable functions let’s first remember how
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implicit differentiation works for functions of one variable.

Example 58 i

Find :% for 3y* + =¥ = 5r.
r

Solution

Remember that the key to this is to always think of y as a function of r, or y = y(z) and so
whenever we differentiate a term involving y's with respect to » we will really need to use
the chain rule which will mean that we will add on a % to that term.

The first step is to differentiate both sides with respect to r.

]'ly‘g—y + 7% =5
r

The final step is to solve for 5.

dy 5-7z%

‘ dr ~ 1253 '

Now, we did this problem because implicit differentiation works in exactly the same manner with
functions of multiple variables. If we have a function in terms of three variables z, y, and z we will
assume that :z is in fact a function of r and y. In other words, z = z (z.y). Then whenever we
differentiate 2's with respect to = we will use the chain rule and add on a 5%. Likewise, whenever
we differentiate z's with respect to y we will add on a —jﬁ

Let's take a quick look at a couple of implicit differentiation problems.

(IR 3

Find ‘:—z and ';—Z for each of the following functions.
or ay

(a) JAZ.' = 5J'U.‘Z =D _rJ + y’"

(b) z*sin(2y — 5z) = 1 + ycos(fizx)

Solution
(a) 22 — sz =22 + 3

Let's start with finding 5. We first will differentiate both sides with respect to = and

[— —
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remember to add on a 4% whenever we differentiate a = from the chain rule.

3rizt 4 ‘.’.r"z'.)—z -5z - :.'uu"i’i =2r
or Or
Remember that since we are assuming z = z (z, y) then any product of +'s and z's will
be a product and so will need the product rule!

Now, solve for $=.
- 0z 9 -
(2032 — 5xy’) == = 2r — 3272% + 5y°z
dr
dz  2r-3r*2 + 50z
ar 253z — xS

Now we'll do the same thing for 3’5 except this time we'll need to remember to add on

a ;-jﬁ whenever we differentiate a z from the chain rule.

%) -0 :
253222 _ %tz — Sryt = = 3y
dy dy
iz

(222 — 51y”) 3u° + Bay'z

ay
a9z  3y* +25ry'z
dy — 223z — Sxyd

(b) #*sin(2y — Hz) = 1 + ycos(Gzr)

We'll do the same thing for this function as we did in the previous part. First let’s find
Oz
;’"} .

2zsin (2y — 5z) + 2 oS (2y — 52) (—525) = —y sin (Gzx) (ﬂz - m',’—z)
dx dx

Don't forget to do the chain rule on each of the trig functions and when we are differ-
entiating the inside function on the cosine we will need to also use the product rule.
Now let's solve for 5=.

X oz - y ’ 0z
2rsin(2y — 5z) — 55;1"008(21; —5Hz) = —6zysin(Gzr) — Gyrsin(Gzr) Fre

> < ).
2z sin (2y — 5z) + Gzysin (6zx) = (5’ cos (2y — 5z) — Gyz Sin (6zz)) %
@z 2rsin(2y — 5z) + Gzysin (6zz)

ar 52 cos (2y — Hz) — Gy sin (Gzr)

I — —EE
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Now let's take care of ‘—,; This one will be slightly easier than the first one.

r* cos 2y — 5z) (E—EE = COS (lizx) — ysin (Gzx) (ﬁrfj—z)
dy iy
4 g i i it
2r°cos (2y — 5z) — .ﬁ_r"mcs (2y — 5z) :Ji = COS (fizx) — GrySin(Gzx) ;j;

L : . iz y 4 i -
[y Sin [ Gzx) — 52 cos [Ty — 5z)) E = COS (fzz) — 227 cos (2y — 5z)

dz _ cosibar) — 2r? pos 2y — Hz)

‘ Jy  GrySin(Bzr) — brlcos 2y — 6z J

There's quite a bit of work to these. We will see an easier way to do implicit differentiation in a later
section.
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